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Marseille, France, laurent.bienvenu@lif.univ-mrs.fr
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Abstract. We study the dynamics of cellular automata, and more specif-
ically their transitivity and expansivity, when the set of configurations is
endowed with a shift-invariant (pseudo-)distance. We first give an orig-
inal proof of the non-transitivity of cellular automata when the set of
configurations is endowed with the Besicovitch pseudo-distance. We then
show that the Besicovitch pseudo-distance induces a distance on the set
of shift-invariant measures and on the whole space of measures, and we
prove that in these spaces also, cellular automata cannot be expansive
nor transitive.

1 Introduction

Cellular automata were introduced by J. von Neumann as a simple formal model
for cellular growth and replication. They consist in a discrete lattice of finite-state
machines, called cells which evolve sequentially and synchronously according to
a local rule. This local rule is the same for all cells and determines how a cell will
evolve given the states of a finite number of neighboring cells. A snapshot of the
states of the cells is called a configuration, and a cellular automaton can be seen
as a map from the set of configurations to itself. Despite the apparent simplicity
of their definition, cellular automata, seen as discrete dynamical systems, can
have very complex behaviors, some of which not even being fully understood yet.
This behavior is typically studied by endowing the set of configurations with the
Cantor distance. For this distance the so-called shift maps, which spacially shift
the states of cells according to a fixed vector, can have highly chaotic behaviors.

Other distances can also be defined on the space of configurations for which
the shift maps are non-chaotic. An example of such a distance is the Besicovitch
distance (in fact, pseudo-distance), introduced by Cattaneo et al. [CFMM97].
It was proven by Blanchard et al. [BCF03] that no cellular automaton can be
transitive for this pseudo-distance. Their proof uses Kolmogorov complexity,
which is an algorithmic measure of information content. We first provide new
simple proof of this fact, also based on Kolmogorov complexity, and we show
that our proof can be turned into a purely analytic one, based on Hausdorff
dimension.



Suppose now that a measure µ is defined on the set of configurations. A cel-
lular automaton acts on the set of configurations and canonically transforms µ
into another measure. Hence, instead of its action on the set of configurations,
a cellular automaton can be studied via its action on the set of measures. If µ is
shift-invariant, then its image by any cellular automaton is also shift-invariant.
Hence, cellular automata also have a natural action on the set of shift-invariant
measures. In [Sab07], it is shown that any pseudo-distance on the set of configura-
tions induces a pseudo-distance on the set of shift-invariant measures. Thus, both
the Cantor and the Besicovitch distances induce a distance on the set of shift-
invariant measures. We show that in this framework also, no cellular automaton
is transitive nor expansive on the set of shift-invariant measures endowed with
the distance induced by the Besicovitch distance.

The last section of the paper unifies the two proofs of non-transitivity, in
the space of configurations and in the space of shift-invariant measures respec-
tively, by embedding these two spaces in the (much) bigger one containing all
measures (non-necessarily shift-invariant). Here again, Kolmogorov complexity
and effective Hausdorff dimension turn out to be the cornerstone of the proof.

Before moving on to our discussion, we recall the formal definition of the
main concepts of the paper, namely transitivity and expansivity. Let (X, d) be
a metric space, and f : X → X. The map f is said to be transitive if for any
x, y ∈ X and any ε > 0, there exists x′, y′ ∈ X and n ∈ N such that d(x, x′) < ε,
d(y, y′) < ε and fn(x′) = y′. It is said to be expansive if there exists ε > 0 such
that for all x, y with x 6= y, there exists an n ∈ N such that d(fn(x), fn(y)) > ε.

Informally, transitivity is a mixing property, while expansivity is a sign of
sensitivity to initial conditions. Hence, both these conditions are often seen as
symptomatic of chaotic dynamical systems.

2 Action of cellular automata on AM

Formally speaking, a cellular automaton is a tuple 〈A, M, U, δ〉 where A is a finite
alphabet (the set of states), M is a semi-group (the set of indices of cells), U is
a finite subset of M (the neighborhood), and δ is a function from AU into A (the
local rule). In this setting, the set of configurations is the set AM. The cellular
automaton acts on it via its global rule, defined as follows: for all x ∈ AM, and all
i ∈ M, the i-th coordinate of F (x) is given by the rule F (x)i = δ((xi+k : k ∈ U)).
In the sequel, when this create no confusion, we will make no distinction between
a CA and its global rule.

In this paper, the semi-group M will be of the form M = Zd′×Nd′′ , but most
of the results we will present can be generalized to a larger class of semi-groups.
Let M = Zd′ × Nd′′ . For all m ∈ M, we denote by |m| the distance of m to
the origin point. This allows us to define the radius of the cellular automaton:
r(F ) = max{|m| : m ∈ U} where U is the neighborhood of F .



Cantor topology One can define a topology on AM by endowing A with the
discrete topology, and considering the product topology (or Cantor topology)
on AM. For this topology, AM is compact, perfect and totally disconnected.
Moreover one can define a metric (which we call the Cantor distance) on AM

which is compatible with the Cantor topology:

∀x, y ∈ AM, dC(x, y) = 2−min{|i|:xi 6=yi i∈M}.

Let U ⊂ M. For x ∈ AM, we denote by xU ∈ AU the restriction of x to U.
For a pattern w ∈ AU, one defines the cylinder centered on w by [w]U = {x ∈
AZ : xU = w}.

The action of M on itself allows to define an action on AM by shift. For all
m ∈ M this action is defined by:

σm : AM −→ AM

(xi)i∈M 7−→ (xi+m)i∈M

Cellular automata commute with the shift maps: for every cellular automaton
F : AM → AM and all m ∈ M, F ◦ σm = σm ◦ F . In fact, this a fundamental
characteristic of CA. Indeed, Hedlund’s theorem [Hed69] states that the cellular
automata on (AM, dC) are exactly the continuous functions which commute with
the shift maps. It is easy to remark that any cellular automaton F is Lipschitz
for the distance dC . More precisely, for all x, y ∈ AM, one has:

dC(F (x), F (y)) ≤ 2−r(F )dC(x, y).

It is well-known and easy to see that the action of any shift σm on (AM, dC)
is transitive. More generally, for all surjective cellular automaton F : AM → AM

of neighborhood U one can easily check that the action of F ◦ σm on (AM, dC)
is transitive for all m ∈ M \ U. The reason for this is that the distance dC is
non-homogeneous, hence a simple transport of information is enough to obtain
transitivity. This can seem counter-intuitive, and a natural way to overcome
this problem is to look at the action of cellular automata on spaces where the
distance is shift-invariant or even where the points of the space are themselves
shift-invariant. In such spaces, transitivity will not come from transport of in-
formation, but rather from creation of information.

Besicovitch topology Thus, it seems that a shift-invariant distance on AM

would be very appropriate to study the dynamics of cellular automata. Following
this idea, Cattaneo et al. introduced the Besicovitch pseudo-distance:

Definition 1 ([CFMM97]). The Besicovitch pseudo-distance dB is defined on
AM by

dB(x, y) = lim sup
n→+∞

Card
(
{i ∈ Un : xi 6= yi}

)
Card(Un)

.



Informally speaking, it measures the asymptotic density of the cells on which
x and y differ. It is clearly a pseudo-distance, i.e. it satisfies both the symetry
property and triangular inequality. However, dB(x, y) does not imply x = y: if x
and y coincide everywhere except on a very sparse set of cells, their Besicovitch
pseudo-distance is zero, and yet they are different configurations. Hence, the
topology induced on AM by dB is not separated. Notice also that dB is shift-
invariant.

It was proven by Blanchard et al. that CA cannot be expansive with respect
to dB :

Theorem 1 ([BFK97]). There is no expansive CA on (AM, dB).

Cattaneo et al. asked whether there exist transitive CA for the Besicovitch
pseudo-distance. It remained a recurrent open question (see [BFK97], [Man98],
[DFM00]) until it was negatively answered by Blanchard et al. [BCF03]. The
original proof of this theorem uses the notion of Kolmogorov complexity, but
is quite involved. We present here a simpler proof also based on Kolmogorov
complexity, which we will extend later to a much more general framework. We
assume that the reader is familiar with Kolmogorov complexity (see [LV97] for
an extensive survey, see also [Cal02] for Kolmogorov complexity of strings over
a non-binary alphabet).

Theorem 2. There is no transitive CA on (AM, dB).

Proof. For all x ∈ AM, we set

dim1(x) = lim inf
n→+∞

K(xUn
)

Card(Un)

where K denotes Kolmogorov complexity (what version of Kolmogorov com-
plexity we use does not matter, since all versions coincide up to a logarithmic
term). Notice that the quantity dim1(x) lies in [0, log |A|] (here and in the rest
of the paper, log is the logartihm of base 2). The notation dim1 is justified by
a result of Mayordomo [May00] who (elaborating on the work of Staiger and
others) showed that this quantity is an effectivization of Hausdorff dimension.
We start with two easy lemmas, which we will need again later on:

Lemma 1. For every x ∈ AM and every CA F , one has dim1(F (x)) ≤ dim1(x)

Indeed, to compute F (x)Un
, one only needs to know xUn+r(F ) , by definition

of a CA. Hence K(F (x)Un
) ≤ K(xUn+r(F )). But as M = Nd′ × Zd′′ , there are at

most O(nd′+d′′−1) cells in Un+r(F ) \ Un. Hence,

K(F (x)Un
) ≤ K(xUn+r(F )) ≤ K(xUn

) + O(nd′+d′′−1).

Since the quantity O(nd′+d′′−1) is a o(Card(Un)) (because Card(Un) = O(nd′+d′′)),
the lemma is proved.



Lemma 2. For all x, y ∈ AM:

|dim1(x)− dim1(y)| ≤ ~(dB(x, y))

with ~(x) = −(1−x) log(1−x)−x log(x)+x log |A| (notice that ~(x) is concave,
and tends towards 0 as x tends towards 0, which proves that dim1 is uniformly
continuous w.r.t dB).

Let k = |A|. We identify A with (Z/kZ) = {0...k − 1}, and hence AM with
(Z/kZ)M, which is a group (and we denote its addition by ⊕). If dB(x, y) ≤ ε
then by definition of dB , one can write x = y⊕z, where z is a configuration such

that for all n,
Card

(
{i∈Un:zi 6=0}

)
Card(Un) ≤ ε+o(1). For a given n, setting N = Card(Un),

the number of patterns consisting of N cells, with at least (1− ε)N cells labeled
by 0 is bounded by

εN

(
N

εN

)
|A|εN

Hence, the Kolmogorov complexity of zUn
is not greater than the logarithm of

this quantity, which, by Stirling’s formula, is equal to ~(ε)N + o(N). Since xUn

can be computed from yUn
and zUn

, it follows that for all n,

K(xUn
) ≤ K(yUn

)+K(zUn
)+o(Card(Un)) ≤ K(yUn

)+~(ε)Card(Un)+o(Card(Un))

By definition of dim1, the lemma follows. We are now ready to prove Theorem 2.
Let F be a CA on AM. Let x be a configuration such that dim1(x) = 0 and y
such that dim1(y) = log |A| (such sequences exist, see for example [Lut00]). Let
ε > 0. If F were transitive, then there would exist x′, y′ ∈ AM and n ∈ N
such that dB(x, x′) ≤ ε, dB(y, y′) ≤ ε and Fn(x′) = y′. By Lemma 2, we
would then have dim1(x′) ≤ ~(ε), and dim1(y′) ≥ 1 − ~(ε). But also, applying
inductively Lemma 1 on x′, we would have dim1(Fn(x′)) ≤ dim1(x′) ≤ ~(ε), i.e,
dim1(y′) ≤ ~(ε). For ε small enough, this contradicts dim1(y′) ≥ 1− ~(ε). ut

3 Action of cellular automata on Mσ(AM)

Measures on AM Let B be the Borel sigma-algebra of AM. We denote by
M(AM) the set of probability measures on AM defined on the sigma-algebra B.
Usually M(AM) is endowed with weak∗ topology: a sequence (µn)n∈N of M(AM)
converges to µ ∈ M(AM) if and only if for all finite subset U ⊂ M and for all
pattern u ∈ AU, one has limn→∞ µn([u]U) = µ([u]U).

In the weak∗ topology, the setM(AM) is compact and metrizable. One defines
a distance compatible with the weak∗ topology by for all µ, ν ∈M(AM):

dM∗ (µ, ν) =
∑
n∈N

1
Card(Un)

∑
u∈AUn

∣∣µ([u]Un
)− ν([u]Un

)
∣∣,

where Un = {m ∈ M : |m| ≤ n}.



Let F : X → Y be a mesurable function between the measurable spaces X
and Y and let µ ∈M(X). It is possible to consider the mesure F∗µ on Y defined
by F∗µ(B) = µ(F−1(B)) for all measurable set B ⊂ Y . Thus, the M-action σ
acts naturally on M(AM) by:

σm
∗ (µ(B)) = µ(σ−m(B)), for all m ∈ M, µ ∈M(AM) and B ∈ B.

A measure µ ∈ M(AM) is said σ-invariant if σm
∗ µ = µ for all m ∈ M; denote

Mσ(AM) the set of σ-invariant probability measure.

The distance dM
B In [Sab07], a general framework to define a distance on

Mσ(AM) is given: let d be a pseudo-distance on AM, we want to introduce
a pseudo-distance on Mσ(AM) induced by the pseudo-distance d. Let µ, ν ∈
Mσ(AM), the intuitive idea is to calculate the mean of d(x, y) when x is chosen
according to the probability measure µ and y according to the probability mea-
sure ν. If we just take (x, y) according to the probability µ× ν, when ν = µ, one
obtains

∫
d(x, y)d(µ × µ) which is in general positive. Hence it is important to

allow some kind of correlation in the choice of x and y. This is why we introduce
the notion of joint measure.

Let µ and ν be two σ-invariant probability measures on AM. A probability
measure λ on AM × AM is a joint measure according to µ and ν if λ is σ × σ-
invariant and π1

∗λ = µ and π2
∗λ = ν, where π1 and π2 are respectively the

projections according the first and second coordinate. Denote J (µ, ν) the set of
joint measures according µ and ν. Of course, one has J (µ, ν) ⊂ Mσ×σ(AM ×
AM). Moreover J (µ, ν) is convex and compact for the weak topology.

Definition 2. Let d be a pseudo-distance on AM such that (x, y) 7→ d(x, y) is
Borel-measurable (this is the case for dC and dB). One defines a function dM

from Mσ(AM)×Mσ(AM) on R+ by:

dM(µ, ν) = inf
λ∈J (µ,ν)

∫
d(x, y)dλ(x, y) for all µ, ν ∈Mσ(AM).

In [Sab07], we prove that dMC is equivalent to dM∗ and that dMB defines a
distance on Mσ(AM), which is not equivalent to dM∗ . Moreover we give general
properties about this type of measure. In particular we have the following lemma:

Lemma 3. Let µ, ν ∈Mσ(AM) and let U ⊂ M be a finite subset. One has:

dMB (µ, ν) ≥ 1
Card(U)

inf
λ∈J (µ,ν)

λ([u]U × [v]U : u, v ∈ AU, u 6= v).

Proof. Let µ, ν ∈Mσ(AM) and let λ ∈ J (µ, ν). Let u, v ∈ AU, one has:

⋃
u,v∈AU,u 6=v

[u]U × [v]U ⊂
⋃

m∈U

 ⋃
a,b∈A,a6=b

[a]m × [b]m

 .



One deduces the following inequality:

λ([u]U × [v]U : u, v ∈ AU, u 6= v) ≤
∑
m∈U

λ([a]m × [b]m : a, b ∈ A, a 6= b)

=
(?)

Card(U) λ([a]0 × [b]0 : a, b ∈ A, a 6= b),

where (?) follows from the σ × σ-invariance of λ.

This lemma allows in particular to prove that dMB is a distance.

Action of a cellular automaton on Mσ(AM) Let (AM, F ) be a CA and
µ ∈ Mσ(AM). Since F commutes with the shift, if µ ∈ Mσ(AM) then F∗µ ∈
Mσ(AM). Let d be a pseudo-distance on AM. To study the N-action of F∗ on
(Mσ(AM), dM) as a dynamical system, we are going to prove the continuity of
the function F∗ on (Mσ(AM), dM).

Proposition 1. Let d be a pseudo-distance on AM and let F : AM → AM be a
function d-Lipschitz of constant K on AM. For all µ, ν ∈Mσ(AM), one has:

dM(F∗µ, F∗ν) ≤ KdM(µ, ν).

In particular F∗ is continuous on (Mσ(AM), dM).

Proof. Let λ ∈ J (µ, ν), one has (F∗ × F∗)λ ∈ J (F∗µ, F∗ν), thus:∫
d(x, y)d(F∗ × F∗)λ =

∫
d(F (x), F (y)) dλ ≤

∫
Kd(x, y) dλ.

One deduces that d(F∗µ, F∗ν) ≤ Kd(µ, ν).

Since all CA are Lipschitz for dC and dB , this proposition holds for all CA.
Thus one can study the dynamical system F∗ : Mσ(AM) →Mσ(AM) according
to the distance dM∗ or dMB .

Non-expansivity of CA on (Mσ(AM), dM
B ) In the space of measures (Mσ(AM), dMB ),

we have the following counterpart to Theorem 1:

Proposition 2. Let (AM, F ) be a CA. F∗ does not act expansively on (Mσ(AM), dMB )

Proof. Let µ, ν ∈ (Mσ(AM) and ε > 0. Consider µ′ = (1 − ε)µ + εν. Let
λ′ ∈ J (µ, µ) and λ′′ ∈ J (µ, ν), such that λ = (1 − ε)λ′ + ελ′′ ∈ J (µ, µ′). One
then has:

(1− ε)
∫

d(x, y)dλ′ + ε

∫
d(x, y)dλ′′ =

∫
d(x, y)dλ ≥ dM(µ, µ′)

Thus,

εdM(µ, ν) = (1− ε)dM(µ, µ) + εdM(µ, ν) ≥ dM(µ, (1− ε)µ + εν)

Since F∗ preserves convex combinations, one has Fn
∗ µ′ = (1− ε)Fn

∗ µ + εFn
∗ ν

for all n ∈ N, so dM(Fn
∗ µ, Fn

∗ µ′) ≤ εdM(Fn
∗ µ, Fn

∗ ν). Hence, F∗ is not enxpansive
in (Mσ(AM), dMB ).



Continuity of the entropy of σ The information contained in a a generic
configuration can be expressed by the entropy of the shift. A comparative study
of the entropy of the shift and Kolmogorov complexity was carried out by
Brudno [Bru82]. As we will see, the entropy of the shift is continuous with
respect to the underlying measure.

Definition 3. Let µ ∈ Mσ(AM), the entropy of the shift M-action can be de-
fined as:

hµ(σ) = lim
n→∞

Hµ(PUn
)

Card(Un)
,

where PUn
is the partition of cylinders centered on Un and Hµ(PUn

) is the en-
tropy of the partition PUn

according to the measure µ, defined by:

Hµ(PUn) = −
∑

u∈AUn

µ([u]Un) log(µ([u]Un)).

One recalls that Un = {m ∈ M : |m| ≤ n}.
Let P1 and P2 be two partitions of AM. We define the refinement of P1 and

P2 by
P1 ∨ P2 = {A ∩B : A ∈ P1 and B ∈ P2}.

Moreover it is possible to define the conditional entropy of P1 given P2:

Hµ(P1|P2) = −
∑

B∈P2

µ(B)
∑

A∈P1

µ(A ∩B)
µ(B)

log(µ(A)).

Thanks conditional entropy, it is possible to decompose the entropy of a
refinement:

Hµ(P1 ∨ P2) = Hµ(P2) + Hµ(P1|P2).

It is well known that the function µ 7→ hµ(σ) is upper semi-continuous in
(Mσ(AM), dM∗ ), see [DGS76] for more detail.

Theorem 3. The function µ 7→ hµ(σ) is uniformly continuous in (Mσ(AM), dMB ).

Proof. Let µ and ν in Mσ(AM). By definition of the entropy of σ, one has

hµ(σ) = lim
n→∞

Hµ(PUn)
Card(Un)

and hν(σ) = lim
n→∞

Hν(PUn)
Card(Un)

.

However, for all λ ∈ J (µ, ν) one has:

|Hµ(PUn
)−Hν(PUn

)| = |Hλ(PUn
×AM)−Hλ(AM × PUn

)|
= |

(
Hλ(PUn

×AM)−Hλ(PUn
×AM ∨ AM × PUn

)
)

−
(
Hλ(AM × PUn)−Hλ(PUn ×AM ∨ AM × PUn)

)
|

≤ Hλ(PUn
×AM|AM × PUn

) + Hλ(AM × PUn
|PUn

×AM).



Moreover, one has:

Hλ(PUn
×AM|AM × PUn

) ≤
∑
i∈Un

Hλ(Pi ×AM|AM × PUn
)

≤ Card(Un)Hλ(P0 ×AM|AM × PUn
)

≤ Card(Un)Hλ(P0 ×AM|AM × P0),

where P0 = PU0 . Symmetrically one obtains

Hλ(AM × PUn |PUn ×AM) ≤ Card(Un)Hλ(AM × P0|P0 ×AM).

Thus, by summation one has:

|hµ(σ)− hν(σ)| ≤ Hλ(P0 ×AM|AM × P0) + Hλ(AM × P0|P0 ×AM).

Consider α = (∪a,b∈A,a6=b[a]0×[b]0;∪a∈A[a]0×[a]0), the partition of AM×AM

formed of two elements. Set δ = λ(∪a,b∈A,a6=b[a]0 × [b]0). One has:

Hλ(P0 ×AM|AM × P0) ≤ Hλ(α) ≤ −(δ log(δ) + (1− δ) log(1− δ)).

Let ε > 0. The function δ → δ log(δ)+(1−δ) log(1−δ) tends towards 0 when δ
tends towards 0. Thus, there exists δ0 > 0 such that δ log(δ)+(1−δ) log(1−δ) ≤ ε

2
for all δ < δ0. Let µ, ν ∈ Mσ(AM) such that dMB (µ, ν) < δ0. According to
Lemma 3, there exists λ ∈ J (µ, ν) such that

λ([a]0 × [b]0 : a, b ∈ A, a 6= b) ≤ dMB (µ, ν) < δ0.

In this case, one has Hλ(P0 ×AM|AM ×P0) ≤ ε
2 , and symetically Hλ(AM ×

P0,P0 × AM) ≤ ε
2 . We deduce that for all ε > 0, there exists δ0 such that if

dMB (µ, ν) ≤ δ0 then

|hµ(σ)− hν(σ)| ≤ Hλ(P0 ×AM|AM × P0) + Hλ(AM × P0|P0 ×AM) ≤ ε.

This proves the uniform continuity of µ → hµ(σ) in (Mσ(AM), dMB ).

Application to transitivity

Theorem 4. Let (AM, F ) be a CA. F∗ cannot be transitive in (Mσ(AM), dMB ).

Proof. Let

U = {µ ∈Mσ(AM) : hµ(σ) < 1/3} and V = {µ ∈Mσ(AM) : hµ(σ) > 2/3}.

By Theorem 3, U and V are open sets of (Mσ(AM), dMB ). Since F commutes
with σ, it can be view as a factor map from (AM, µ, σ) to (AM, F∗µ, σ), so one
has hµ(σ) ≥ hF∗µ(σ). Thus F∗(U) ⊂ U . One deduces that V ∩ Fn

∗ (U) = ∅ for all
n ∈ N, thus F∗ can not be transitive in (Mσ(AM), dMB ).

In (Mσ(AM), dM∗ ), the function µ → hµ(σ) is just upper semi-continuous, so
V is not open and the previous proof does not hold. In the space (Mσ(AM), dM∗ ),
the existence of transitive CA is open.



4 Action of cellular automata on M(AM)

In this section, we do not restrict ourselves to the space of shift-invariant mea-
sures: we instead consider the whole space M(AM). The distance dMB defined
in the previous section can be extended to arbitrary measures, hence endowing
M(AM) with a Besicovitch-like topology. On the space M(AM), dMB is only a
pseudo-distance, as for example two measures which are equal up to a shift are
at distance 0 from each other. Similarly to (AM, dB), the space (M(AM), dMB ) is
not separated.

The space (Mσ(AM), dMB ) can clearly be viewed as a subspace of (M(AM), dMB ).
Moreover, (AM, dB) can also be viewed as a subspace of (M(AM), dMB ) via the
isometric embedding

AM −→M(AM)
x 7−→ δx

where δx is the measure concentrated on x (i.e. δx(A) = 1 if x ∈ A, δx(A) = 0
otherwise).

The proof of non-expansivity of CA which was proven in the previous sec-
tion naturally extends to the whole space (M(AM), dMB ). On the other hand, the
proofs of non-transitivity we presented respectively for (AM, dB) and (Mσ(AM), dMB )
cannot be extended in a completely straightforward way to (M(AM), dB). It is
true however that no CA is transitive in this space. In fact, non-transitivity
happens in the larger class of Lipschitz funtions:

Theorem 5. Let F : AM → AM be a function that is Lipschitz w.r.t. the dis-
tance dC . The action of F∗ on (M(AM), dMB ) is not transitive.

Proof. We adapt the proof of Theorem 2. First notice that for a function F that
is Lipschitz in dC with constant 2r one only needs to know F xUn+r

to compute
F (x)Un

, hence Lemma 1 remains true if one takes F to be a Lipschitz function
w.r.t. dC and one replaces Kolmogorov complexity K by K(F ), i.e. Kolmogorov
complexity relativized to oracle F (F being a Lipschitz function, it can be given
as an oracle), and dim1 by dim(F )

1 .

For a measure µ, we set

Edim1(µ) =
∫

dim1(x) dµ(x)

We will need the following analogue of Lemma 2 (which can be relativized
to any given oracle):

Lemma 4. There exists a constant c such that for all µ, ν:

dMB (µ, ν) < c ⇒
∣∣Edim1(µ)− Edim1(ν)

∣∣ ≤ ~(dMB (µ, ν))

and thus, Edim1 is uniformly continuous w.r.t. dMB .



Let c be the constant such that ~ is increasing on [0, c], and let µ, ν be such
that dMB (µ, ν) < c. Let ε ∈ (dMB (µ, ν), c). By definition of dMB , there exists a
measure λ ∈ J (µ, ν) such that∫

dB(x, y) dλ ≤ ε

Since ~ is increasing on [0, c] and concave:∫
~(dB(x, y)) ≤ ~

( ∫
dB(x, y) dλ

)
≤ ~(ε)

which by Lemma 1 implies:∫
|dim1(x)− dim1(y)|dλ ≤ ~(ε)

and thus ∣∣Edim1(µ)− Edim1(ν)
∣∣ ≤ ~(ε)

which implies the desired result, as ε can be chosen arbitrarily close to dMB (µ, ν).
We are now ready to prove Theorem 5. Let F be a Lipschitz function w.r.t.

dC . Let δ0 be the measure concentrated on the configuration where all cells have
state 0, and ν be Lebesgue measure. Let µ′ be a measure such that dMB (δ0, µ

′) ≤
ε and µ′′ be a measure such that dMB (ν, µ′′) ≤ ε with ε small enough. Since
Edim1(δ0) = 0 and Edim1(ν) = log |A|, by Lemma 4, one has Edim1(µ′) ≤ ~(ε)
and Edim1(µ′′) ≥ 1− ~(ε).

By Lemma 1, for all x ∈ AM, one has dim(F )
1 (F (x)) ≤ dim(F )

1 (x), hence
for every µ ∈ M(AM), Edim(F )

1 (F∗(µ)) ≤ Edim(F )
1 (µ). Hence, by the above

discussion, if dMB (δ0, µ) ≤ ε, for all n ∈ N, Edim(F )
1 (Fn

∗ (µ)) ≤ ~(ε), which (still
by the above discussion) means that Fn

∗ (µ) will never be dMB -close to Lebesgue
measure. This finishes the proof of the theorem.

The non-tranisitivity of CA in (Mσ(AM), dMB ) (as stated in Theorem 4)
immediately follows from the above proof, as δ0 and Lebesgue measure are shift-
invariant measures. On can also modifiy the above proof to get Theorem 2:
instead of Lebesgue measure, take ν equal to δz for some z ∈ AM such that
dim(F )

1 (z) = log |A|, the rest of the proof remaining the same.

Conclusion

It appears that in the shift-invariant topologies we considered, cellular automata
cannot be expansive nor transitive. This is mainly due to the unability of cellular
automata to create information. Indeed, for the non-transitivity of CA, the three
proofs we gave all have the same scheme. First, we define on a (pseudo-)metric
space (E, d) where d is a shift-invariant distance (in this paper, resp. (AM, dB),
(Mσ(AM), dMB ) and (M(AM), dMB )) a quantity which in some sense measures



the amount of information, I : E → R+, (resp. dim1, hµ(σ) and Edim1), which
we prove to be uniformly continuous w.r.t. the distance d. This amount of in-
formation is non-increasing under the action of a cellular automaton (or even
Lipschitz functions), i.e. I(F (x)) ≤ I(x) for all x ∈ E. Since in all cases there
are elements of the space which contain little information (i.e. I(x) = 0) and
some which contain a lot of information (i.e. in our case I(x) = log |A|). Hence,
the two open sets U = {x ∈ E : I(x) < ε} and V = {x ∈ E : I(x) > log |A| − ε}
witness, for ε small enough, the non-transitivity of cellular automata.
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